
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 1

artdaq: An Event-Building, Filtering, and
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Abstract—Several current and proposed experiments at the
Fermi National Accelerator Laboratory, Batavia, IL, USA, have
novel data acquisition needs. These include 1) continuous digi-
tization, using commercial high-speed digitizers, of signals from
the detectors, 2) the transfer of all of the digitized waveform data
to commercial off-the-shelf (COTS) processors, 3) the filtering or
compression of the waveform data, or both, and 4) the writing of
the resultant data to disk for later, more complete, analysis.
To address these needs, members of the Accelerator and De-

tector Simulation and Support Department within the Scientific
Computing Division at Fermilab are using parallel processing
technologies in the development of artdaq, a generic data acqui-
sition toolkit. The artdaq toolkit uses Message Passing Interface
(MPI) and art, an established event-processing framework shared
by new experiments at Fermilab. In an artdaq program, the digi-
tized data are transferred into computing nodes using commodity
Peripheral Component Interconnect Express (PCIe) cards, and
event fragments are transferred between distributed processes
using MPI and assembled into complete events. These events are
then processed by a configurable selection of user-specified algo-
rithms, commonly including filtering and compression algorithms,
using the art event-processing framework.
This paper describes the architecture and implementation of the

first phase of the artdaq toolkit and shows early performance re-
sults with configurations that match upcoming experiments both
at Fermilab and elsewhere.

Index Terms—Concurrent programming, data acquisition, dis-
tributed programming.

I. INTRODUCTION

T HE artdaq project has been established to design and de-
velop a generic toolkit for the construction of efficient and

robust event1 building, filtering, and analysis programs within
data acquisition systems for future medium-scale experiments,
such as those planned at Fermilab for the next decade. These ex-
periments have fewer collaborators than recent and current col-
lider experiments, and so cannot easily afford to develop and
maintain as much customized infrastructure software as could
the larger experiments of the TeVatron era.
An important aim of the artdaq project is to allow the sharing

of data acquisition (DAQ) infrastructure between experiments,
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1An event, in our terminology, is a collection of data associated with one
time window and is the smallest unit of data to be processed by the modular
algorithms of the event-processing framework.

helping them to work within the smaller budgets available to
them. We are able to help these experiments to concentrate their
efforts on the parts of the system that are experiment specific and
to relieve them of the burden of supporting the parts of the code
that can be dealt with in a generic (i.e., non-experiment-specific)
manner.
A second aim of artdaq is to allow use of commercial off-

the-shelf (COTS) computers, rather than (as is traditional in
the field) special-purpose hardware such as field-programmable
gate arrays (FPGAs), as close to the data source as possible.
This makes programming easier, because many more physicists
know how to program general-purpose computers than know
how to program special-purpose hardware. Since modern COTS
computers havemultiple cores, artdaq is designed to take advan-
tage of the inherent parallelism of the event-building process, to
perform event-filtering of independent events in parallel, and to
make the development of modular event-processing algorithms
that internally use parallel programming techniques convenient.
In addition, we aim to take advantage of the high throughput of
modern machines, using high-performance networks, hardware
buses, and interconnects.
In many of the experiments with which we have worked,

the development of online and offline event-processing code
has proceeded separately, by communities who interact and ex-
change code with insufficient frequency. The result is that the
integration of the online and offline codes historically has been
a time-consuming challenge. To alleviate this problem artdaq
makes use of the art [1] event-processing framework, already
in offline use by many of the upcoming Fermilab experiments.
Experiments who use artdaq would thus gain the benefit of a
larger community of developers for the online system (the of-
fline system is typically understood by more collaborators). In
addition, this means much of the code used in online filter sys-
tems can be verified in the offline environment.

II. PROBLEMS ADDRESSED

In this section, we describe three of the problems that artdaq
addresses. They are general in nature; although not all apply to
every experiment, most experiments encounter one or more of
them. In the subsequent section, we describe some concrete use
cases for specific experiments that have guided the development
of artdaq.

A. Event Building

The detectors built by most experiments are read out through
multiple, often heterogeneous, DAQ front ends. Each front
end is responsible for reading a fixed portion of the detector
hardware. One of the important tasks to be undertaken by the
DAQ system is the assembly of all the readouts corresponding
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to a single event. We call this assembly process event building.
Event building often requires the coordinated work of several
computing nodes.
The throughput rates of the hardware and software that make

up the event-building system directly limit the amount of data
that an experiment can process in a given period of time. Thus, it
is imperative to communicate data efficiently and reliably from
data collection nodes to wherever the filtering algorithms (or
other data processing algorithms, such as data compression al-
gorithms needed by some experiments to reduce the bulk of
the data to be stored) will be run. This includes experiments
that have no data filtering in front-end hardware and event-pro-
cessing times that vary widely from event to event. Depending
on the computing resources available to an experiment, it may
be beneficial to use the same computing nodes for both event-
building and filtering.
In a software system that contains both shared-memory

and distributed parallelism, the optimal distribution among
computing node of the processes of the system depends on
the amount and types of computing hardware available, the
amount of data movement necessary, and the exact nature of
the computing to be done. In order to make convenient the
testing needed to determine the optimal event-building system
configuration, experiments want to be able to reconfigure the
system (adding more processing capacity, or reacting to loss of
hardware) without reprogramming.

B. Filter Algorithm Execution

Many experiments want to perform as little event filtering as
possible in hardware in order to obtain as much flexibility as
possible for modification of algorithms and thresholds used in
this filtering. Event filtering in software provides the opportu-
nity to obtain this flexibility. One of the goals for our project is
to find to what extent modern computing hardware provides the
computing capacity necessary to do the work.
In order to fine-tune the event selection, experiments want

the ability to modify selection thresholds and to replace algo-
rithms, without rebuilding programs. In addition, many exper-
iments want the ability to run multiple filter algorithms in the
same program, on the same event stream.
Because of the degree of sophistication of filter algorithm

software, experiments want to enable all physicists interested
in working on development and testing of these algorithms to
do so. Thus, experiments want to be able to run these in the
offline framework, as well as in the online system. This allows
for easier development, as well as study of the algorithms within
the simulation, without the concern inherent in the comparison
of two different implementations of (what is intended to be) the
same algorithm. Seamlessly supporting multiple environments
also permits extensive algorithm debugging and performance
studies using typically more readily available offline computing
resources.

C. Single-Node Processing Capacity

Modern experiments need to make use of modern com-
puting hardware, which means taking advantage of multicore
platforms. In an era of tight budgets, it is critical to take full
advantage of the most affordable COTS computing resources
available. Increasingly, this means taking advantage of both

Fig. 1. Major elements of the artdaq architecture. The arrows indicate depen-
dencies, e.g., experiment-supplied raw data formats depend upon the artdaq
generic data components. The colored components are those delivered as part
of artdaq. The remaining components are supplied by the experiments that use
artdaq.

distributed and shared-memory parallel computing technolo-
gies. However, it is not reasonable to expect that all contributors
to online software development will become experts in parallel
programming techniques. In artdaq, we are working to develop
tools that simplify the development of software that is able to
take advantage of the parallelism inherent in the event-building
and filtering tasks, and which utilizes multicore hardware and
high-throughput networks to their greatest advantage.

III. THE ARCHITECTURE OF artdaq

artdaq is a set of C++ libraries and programs, i.e., a toolkit,
for use in the construction of event-building, filtering, and pro-
cessing programs as part of a DAQ system. artdaq contains three
major subsystems:
1) software components for routing data between threads
within a process, and between different processes, pos-
sibly on different machines, and for assembling complete
events from these data;

2) software components that encapsulate the data being
routed, which experiments specialize to provide type-safe
access to the data being routed;

3) the art event-processing framework, to allow loading and
execution of experiment-specific software modules for
processing the data being routed.

Since artdaq is a toolkit, it does not contain any complete
DAQ applications; such applications are to be built by each ex-
periment to that experiment’s specific requirements, constraints,
and preferences. The major components of artdaq are shown
in Fig. 1. All user-visible classes in artdaq are defined in the
artdaq namespace. For brevity, in this paper, we provide class
names without the namespace specification.

A. Data Model Components

The primary data components are the classes Fragment
and RawEvent. An instance of class Fragment represents
a well-defined portion of the data from one event (likely
that read by one front-end unit) as defined by the experi-
ment. The interface of Fragment is sufficient to provide
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the information necessary for routing, and the implementa-
tion organizes the data for optimal throughput of the routing
systems. Each Fragment is identified by a two-part identi-
fier: a SequenceID, which denotes the event to which the
Fragment belongs, and a FragmentID, which identifies
which detector component (or components) are represented
by the Fragment. Each experiment must choose what infor-
mation from its own data is to be used to construct these two
identifiers; for the experiments with which we have worked
thus far, the identification has been trivial. Fragments also
contain a type identifier, which is used to identify what type of
data are being carried by the fragment. This allows experiments
the flexibility of having different types of data (e.g., detector
data, trigger blocks, or end-of-run markers), while ensuring that
all can be handled with the same efficiency by the data-routing
and event-building system.
The physical organization of the data in a Fragment con-

sists of a std::vector of 64-bit unsigned integers. This does
not demand the form of the experiment’s raw data matches;
we describe the restriction on the raw data in Section III-E.
We make use of so-called move semantics introduced in C++
2011 [2] to allow us to pass Fragment objects between soft-
ware components without making a copy of the contained data.
This allows us to keep the code simple to understand and to
use correctly, risking neither memory leaks nor lack of excep-
tion safety. We deal with Fragment objects, not addresses in
memory, but the resulting code is as efficient as if we worked
with the pointers to the data directly. We describe this in more
detail in Section III-B.
The logical organization of the data in a Fragment con-

sists of two parts: a header, which contains the routing informa-
tion described above, and a payload, which contains the experi-
ment-specific data carried by the Fragment. The first two ele-
ments of the std::vector contained in the Fragment con-
tain the bit-packed header information; the interface of Frag-
ment provides access to the data in a convenient and type-safe
manner. The experiment-specific code that works with Frag-
ments does so by overlaying a defined structure onto the pay-
load part of the Fragment, as described in Section III-E. This
system allows for payloads of arbitrarily large size; there are no
compile-time limits set on the sizes of the experiment data.
Fragment objects may be written to disk through the art

framework’s persistency mechanism. This means that any ex-
periment that uses Fragment in the definition of its raw data
classes automatically obtains a means to write those data to the
same type of file that is read by the experiment’s offline system.
In addition to providing the means of persistence for detector
data, this also means that simulations can create data files in
the same format as the experiment’s raw data; thus, the output
of such a simulation can easily be fed through the data pro-
cessing algorithms that will be applied to the detector data, to
help verify correct behavior of those algorithms, and for perfor-
mance tuning.
The event-building process collects Fragments to build

RawEvents, again making use of move semantics to avoid
copying the underlying data. The RawEvent can contain
an arbitrary number of Fragments; again, there is no com-
pile-time limit set. Due to the flexibility of the Fragment,
the RawEvent can contain many different types of exper-

iment-specified detector data; the event-building code that
deals with RawEvents and Fragments does not need to be
modified if new experiment-specific data types are added to an
existing system.

B. Advantages of C++ 2011

An important goal of artdaq is to facilitate the writing of ro-
bust and efficient code. One key to efficiency is the minimiza-
tion of copying of data. In C code, the copying of data is avoided
by passing pointers to values, rather than by passing the values
themselves. However, C provides no automatic memory man-
agement, so great care must be taken to avoid the introduction
of memory leaks. Robust code is thus typically obscured by the
quantity of error-handling and memory-management code re-
quired; modification of such code is error-prone. C++ provides
a mechanism (referred to as resource acquisition is initialization
(RAII) [3]), which, through the use of the strictly defined life-
times of stack objects, removes the need for the programmer to
explicit manage memory. C++ container classes and class tem-
plates (e.g., std::vector) encapsulate this use. However,
naive use of these classes, while producing robust code, can in-
troduce unacceptable performance overheads from the copying
of data. The 2011 C++ standard introduced several language
features, most importantly rvalue references and move seman-
tics, which allow simple and maintainable code to rival the ef-
ficiency of C. The following example code shows a simplified
portion of the artdaq code, in which ownership of the data man-
aged by a Fragment is given over to a RawEvent, rather than
being copied.
If written in C, this code might appear as the following. The

event data would be organized into a struct which organized
the fragment data; the data for each fragment is kept in an array,
with each array being of arbitrary size:

typedef struct {
unsigned long nfrag;
unsigned long sizes;
unsigned long data;

} raw_event;

The function build_event has the task of accepting
the fragments (and the additional data of their sizes, and the
number of fragments), building the raw_event, and releasing
the calling code from ownership of the data it has passed into
the function:

void build_event (unsigned long fragments,
unsigned long sizes,
unsigned long nfrag,
raw_event e ) {

e->nfrag nfrag;

e->sizes sizes;
e->data fragments;

sizes 0;

fragments 0;
}
In this code, the build event function passes ownership,
and thus responsibility for memory management, from the
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caller of build event to the user of the raw event struc-
ture. This code is efficient but is not robust. Most important,
there is no check that the structure e, on input to the function,
does not already reference some memory; any such memory
referenced would be leaked when the data of the struct are
overwritten. Using the GNU C compiler (gcc version 4.7.1,
with –O optimization), this code produces the following
assembly code:

00: mov (%rsi),%rax

03: push %rbp
04: mov %rdx,0x10(%rcx)

08: mov %rsp,%rbp

0b: mov %rax,0x8(%rcx)
0f: mov (%rdi),%rax

12: movq $0x0,(%rsi)

19: mov %rax,(%rcx)
1c: movq $0x0,(%rdi)

23: leaveq

24: retq

We note this is only 11 instructions.
The approximate C++ equivalent of this code, similar to

the code in artdaq, is shown below. First, we introduce a few
typedefs to reduce the amount of typing required, as follows:

typedef std::vector<unsigned long> Fragment;

typedef std::vector<Fragment> Fragment;

typedef std::unique_ptr<FragVec> FragVecPtr;

Next, we define the RawEvent structure, which contains
(and thus controls the lifetime of) the Fragments, as follows:

struct RawEvent { FragVecPtr data; };

Finally, have the C++ version of build_event, as follows:

void build_event (FragVecPtr&& frags,

RawEvent& e) {

e.data = std::move(frags);

}

This code makes use of three features added to C++ in the 2011
standard: std::unique_ptr, std::move, and rvalue ref-
erences. The argument named frags is passed by rvalue refer-
ence; this tells the compiler that this argument can only be bound
to an expression that is an rvalue reference, and furthermore that
the compiler is then free to “move” the resources owned by that
expression to being owned by frags; the std::move then
tells the compiler it is free to pass ownership of the memory con-
trolled by frags to the RawEvent’s data member data. The
data are not copied; only ownership is passed. Unlike the C code
above, this code is robust; if the input RawEvent contained
Fragments, they would be deleted before the new pointer was
assigned. The assembly language produced from this code (by
the GNU C++ compiler of the same version, with the same op-
timization setting) is shown as follows:
00: push %rbp

01: mov %rsp,%rbp

04: push %r13

06: push %r12

08: push %rbx

09: sub $0x8,%rsp

0d: mov (%rdi),%rax

10: movq $0x0,(%rdi)

17: mov (%rsi),%r13

1a: mov %rax,(%rsi)

1d: test %r13,%r13

20: je 70

# instructions elided; they will be

# called only if the incoming event is

# non-empty.

70: add $0x8,%rsp

74: pop %rbx

75: pop %r12

77: pop %r13

79: pop %rbp

7a: retq

We have elided 25 instructions, which are called only if the in-
coming RawEvent is nonempty—which is not the usual case.
The main path of the C++-generated assembly code is 7 instruc-
tions longer than the C code. This demonstrates that the C++
language does not introduce any great deal of complexity be-
hind the scenes. However, the C++ code is arguably more suc-
cinct, and unarguably more robust. Certainly, the C code can be
made robust—but at the cost of simplicity, clarity, and maintain-
ability.

C. Event-Building Components

artdaq makes use of the Message Passing Interface (MPI) [4]
to create a multiprocess, potentially distributed, event-building
program. The use of MPI allows us to take advantage of
high-performance network drivers written for the supercom-
puting community. We also obtain the flexibility of being able
to move different computational tasks to different nodes with
just a change in our configuration scripts, and with no need
to recompile the application. This gives a running experiment
great flexibility in responding to failure or reassignment of
computing hardware. It also makes measuring the performance
of different program configurations a relatively simple task;
one needs only to change a configuration file and re-run the
test program to observe the effectiveness of different process
layouts.
An artdaq event-building and filtering program contains three

processing layers.
1) The fragment receiver layer receives data from the ex-
periment’s front-ends (using whatever communication
mechanism the experiment chooses), and is responsible
for sending the data to the correct event builder, through
MPI.

2) The event-building layer receives data from the fragment
receivers, collating them into complete events. Complete
events are then sent to another thread in the same process
for event processing.

3) The event-processing layer runs the art event-processing
framework, which performs whatever tasks the exper-
iments needs to perform on the data stream. Common
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examples include event filtering, track finding, and data
compression. The data are optionally written to persistent
storage by art.

An artdaq event-building program is configured at run time
to contain a number of fragment receiver processes, and a
number of event-builder processes; there is no requirement
that . Each fragment receiver reads data from a specific
detector component (or set of components) and writes those
data to a Fragment; the FragmentID assigned to that
Fragment identifies the portion of the detector data which the
Fragment carries. The fragment receiver is also responsible
for looking into the detector data to find the (experiment-spe-
cific) data that are used to identify the event to which these data
belong; this is used to create a SequenceID for this event,
and which is used in a round-robin to direct the Fragment
to the event builder responsible for handling that event. We
provide the class SHandles to encapsulate the coordination
of multiple MPI buffers used in sending, and to automatically
record some performance metrics.
Each event-building process receives all the Fragments

from the subset of events bound for it, possibly out-of-order,
and is responsible for building complete events from them. We
have provided a class RHandles to manage multiple MPI
buffers used for reading and to record additional performance
metrics. Using techniques like those described in Section III-B,
we have taken care that once a Fragment has been read into
the MPI buffer, no additional copying of the underlying data
is ever done, regardless of the number of times control of the
Fragment is passed between different functions and even
between different threads of the process.
The most important class in the event-building processes is

EventStore, which is responsible for managing the thread
that runs the art event-processing framework (described in
Section III-D), for accumulating complete events, and for
sending complete events to the thread that runs art. The
EventStore is configured at run time to know the number
of Fragments comprising a complete event. Fragments
making up a particular event may come out of order, and
some Fragments for a later event may show up in the
event-building layer before all the Fragments of an earlier
event. The event-building layer aggregates the Fragments it
receives into RawEvents. When it determines that the receipt
of a Fragment has completed a specific event, the Event
Store layer removes that RawEvent from its internal cache
of incomplete events and sends it to another thread in the same
process, which is responsible for running the art event-pro-
cessing framework. Separate threads of execution are used so
that the thread that is building events can proceed at full pace
even if the occasional event takes a longer-than-average time
to process in the thread that is running art.
An orderly program shutdown is initiated when each frag-

ment-receiver process identifies an end-of-data condition. Each
of these processes then sends an end-of-data Fragment to
each event-building process. When an event-building process
has seen as many end-of-data fragments as it expects, it sends an
end-of-data “event” to the thread running art, and then awaits
the termination of that thread. That thread terminates when the
art has completed processing any events it has buffered, ending

with the end-of-data “event,” which lets art know no more
events are coming.
The event-building system keeps monitoring statistics at a

number of critical points. These include statistics regarding the
number, size, and time taken for MPI data transfers, the number
of incomplete events currently in the EventStore, and the
number of completed events sent to art. We are currently im-
plementing a system that can report all these statistics asynchro-
nously to a DAQ system control program.

D. The art Framework

The art framework is used to execute experiment-supplied
algorithms for both online and offline tasks. Such tasks vary by
experiment, but typically include filtering, reconstruction, data
compression, and writing of data files. It provides configura-
tion ability through use of the Fermilab Hierarchical Configu-
ration Language (FHiCL) [5]. The framework can run an ar-
bitrary collection of algorithms, chosen at configuration time,
not at program compilation or linking time. Experiment-sup-
plied algorithms are implemented bywriting artmodules, which
are classes that implement one of a handful of interfaces spec-
ified by art. Each module is built into a separate dynamically
loaded library. Based on the contents of the FHiCL configura-
tion file, art loads the libraries necessary to run the named mod-
ules. Algorithms can obtain read-only access to experiment-de-
fined data products in the event and add new data products of
their own construction. art also supplies the scheduling features
that allow different combinations of algorithms to be run on dif-
ferent events, based on pass-or-fail decisions made by experi-
ment-supplied filter modules, all without rebuilding the appli-
cation.
Provenance information is automatically stored for all data

products. FHiCL allows experiments to provide “standard” con-
figurations for all modules, and for a user to partly or entirely
override a standard configuration on a case-by-case basis. The
automatic provenance tracking records the parameters that were
actually used to configure each module (regardless of whether
they were the experiment defaults or the user-level overrides)
and associates those parameters with the data product or prod-
ucts made by each module.
The framework has monitoring points around the invoca-

tion of each module, so event-by-event timing results can
be obtained for every module. In addition, simple memory
usage analysis can also be performed, helping to identify any
algorithms with uncontrolled or excessive memory usage.
art also provides a set of run-time-configurable policies for

reacting to exceptions thrown bymodules, and exception classes
for experiments to use in their own code. The data in the excep-
tion communicates the kind of error that has been encountered
(e.g., observation of data corruption). The policy determines
how the frameworkwill respond to that kind of error. Among the
choices are skipping the processing of the module that encoun-
tered the error, skipping the processing of that event entirely.
For the most severe errors, gracefully shutting down the entire
program, and thus avoiding improperly truncated files, broken
network connections, etc., is an option.
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E. What the Experiment Provides

The artdaq toolkit, and the art framework that it relies upon,
provide the generic, i.e., experiment-neutral, parts from which
an experiment can construct an event-building and filtering
system. Individual experiments make use of the provided
infrastructure in several different ways.
At the highest level, individual experiments using artdaq

must still write their own experiment-specific DAQ appli-
cations: artdaq is a toolkit, not a collection of complete
applications. The needs of experiments are sufficiently diverse
that it is unfeasible for us to deliver complete applications to
the experiments. Instead, our groups work with the experiments
to help them produce software matching their specific needs.
Experiments must, of course, define the format of their own

raw data objects. In order for the data products they define to
be consistent with artdaq, it is required that the data of the indi-
vidual product be contained in a contiguous series of bytes; this
is because the data of the Fragment is a contiguous sequence
of 64-bit unsigned integers (contained in a std::vector).
The sequence of integers is not interpreted in any way by
artdaq; neither packing nor unpacking of data is done. It is
straightforward (and strongly recommended) to write utility
classes to handle the technicalities of reading and writing the
data structure, and applying the data product overlay to the
Fragment. This localizes the low-level bit manipulations to
a limited number of classes, rather than having it be visible
in many places in the code that uses these data. As a result,
verification and modification of the code is simpler.
As part of their use of the art framework (both for offline

and online purposes), experiments are responsible for defining
their own data types to describe reconstruction results. These
data products must conform to the restrictions imposed by the
persistency system used by art. For data products that are noted
as non-persistable, these requirements are relaxed.
Also as part of their use of the art framework, experiments are

responsible for defining their own reconstruction and filtering
modules. In the terminology of art, reconstruction includes all
data transformation: unpacking or decompression of data, trans-
lating from “electronics coordinates” to “physics coordinates,”
applying calibrations, as well as what is typically thought of as
reconstruction, e.g., track reconstruction. The framework pro-
vides a few base classes fromwhich experiment-produced mod-
ules must inherit; this allows the modules to be dynamically
loaded and invoked by framework without requiring recompi-
lation of the framework.

IV. GUIDING USE CASES

A. The NO A Prototype Data Driven Trigger

The NO A [6] experiment at Fermilab will search for the os-
cillation of muon neutrinos to electron neutrinos. NO A will
have two detector components, a Near Detector sited at Fer-
milab, and a Far Detector sited at Ash River, MN, USA. The
ND will comprise more than 18 000 readout channels, and the
FD 340–368 thousand channels. A prototype ND, comprising
up to 12 000 instrumented channels, is being built and is in
partial operation. The NO A design features a free-running,
dead-time free, continuous readout. This system will collect
data at 2 GB/s, and buffer up to 20 s worth of data. The data must

be searched to correlate observed detector energy deposits with
beam spills from the NuMI [7] beam facility, identifying events
that consist of those hits in a time window of 5 ms. The NO A
event-building system predates the development of artdaq.
NO A is investigating the design and development of a data

driven trigger (DDT). This gave us the opportunity to verify that
the filter portion of artdaq can readily be adopted into an existing
online software system, and to demonstrate to the experimenters
that algorithms developed in the context of the art framework,
already used by the NO A offline processing, could easily be
deployed online.
In the prototype DDT, the data are read from the

event-building buffer at full rate and sent to art, which is
configured to run analysis modules that examine the data to
identify event topologies of interest. The analysis result—an
accept or reject decision—is then fed back into the experiment’s
global triggering system to form a data-driven decision for a
whole event.
The first physics algorithm to be completed was a track

finding algorithm based on the Hough transform [8]. An art
module with a preliminary implementation of the algorithm
was developed and tested in the offline environment, and
then integrated in the online DDT environment. This module
was then used successfully in the live data stream from the
portion of the NO A Near Detector that was complete at the
time of the testing. The implementation is amenable to many
optimizations, and NO A scientists will continue to improve
it. The successful exercise of the preliminary implementation
in the online DDT environment has demonstrated that study
and optimization of the algorithm in the offline environment
will yield software that can be directly deployed in the online
environment.

B. Fast Compression and High Data Rate at DarkSide-50

DarkSide-50 is a direct dark matter search experiment lo-
cated at the Laboratori Nazionali del Gran Sasso, Italy [9], [10].
For DarkSide-50, we used artdaq to create a prototype event-
building and processing system that would require only one
multicore COTS computing node to keep up with their front-end
data rate. At the time we created the prototype, the plan for this
experiment was to utilize five front-end digitizer boards, each
containing eight 12-bit ADC channels for a total capacity of 40
channels, of which 38 were to be used. Each board would ag-
gregate up to eight channels onto one fiber optic link that would
supply data to the processing node through a Peripheral Com-
ponent Interconnect Express (PCIe) bus. The digitizers would
operate at 250 MHz. Events would consist of one 300- s sam-
pling interval across all channels, yielding 1.2 MB of data per
board, and would occur at a rate not to exceed 50 Hz. To accom-
modate this rate, the computing system is required to handle a
continuous average data rate of 300 MB/s. Due to practical con-
siderations, such as cost of permanent storage, the output stream
is required to not exceed 30MB/s. Fig. 2 shows the organization
of this prototype. Because front-end hardware was not yet avail-
able to us, we provided components that emulate missing func-
tions. To emulate the data link layer through the PCIe bus, we
use an 8x 40 Gb/s QDR InfiniBand (IB) network interface con-
troller connected to an 18-port switch. For the event-processing
system, we used a single node containing 4 AMD6128 chips
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Fig. 2. The major components of the prototype DarkSide-50 event-building system. Solid lines indicate inter-process communication, done mostly through MPI.
Dashed lines indicate communication between different threads in the same process.

(32 total cores), with 64 GB of RAM. Using actual digitizer
test stand data, we created a data generation software library
capable of generating event fragments, each representing the
data of a board with eight channels. We used three more nodes,
each identical to the event-processing node, to emulate the data
generation of the five front ends (for a total of 40 channels of
data). On the single processing node we ran five fragment-re-
ceiving processes, each tied directly to one of the data genera-
tors through the IB network. In order to fully utilize the available
32 cores on the event-processing node, we configured artdaq
with five event processors This configuration yields five parallel
full-event streams for algorithms to operate on.
We used this system to evaluate the rate at which a single

node can ingest data from the digitizers and perform the event-
building task, the rate at which we can run a compression algo-
rithm on the data stream, and the compression ratio that can be
achieved.
We chose to use Huffman coding [11] in our first compres-

sion algorithm, partly due to its simplicity, speed, and ability to
achieve reasonable compression. We parallelized the algorithm
using OpenMP [12], using one thread for the compression of
the data from each board, yielding five-way parallelism for the
processing of a single event. With five available event streams,
each performing five-way parallelism, we are able to utilize 25
of the 32 cores available on the machine.
With this configuration, we are able to operate the system at

an average of 246 events/s, while achieving an average com-
pression ratio of 4.9:1. This is approximately five times faster
than the required 50-Hz rate.

C. Mu2e Multi-Node Event-Building

We have begun studying the feasibility of developing a
full-rate DAQ (one which does little or no hardware filtering)

event-filtering system for the Mu2e experiment [13]. Providing
a software system that will perform event filtering at full rate
will currently require an aggregate throughput of about 30
GB/s from approximately 275 front-end detector sources. The
filtering software will need to reduce the input data stream to
about 30 MB/s. Assuming that digitized waveform data can be
made available on a PCIe bus within a COTS computing node
from the front-end hardware, the questions we are exploring
are: how many nodes will it take to 1) handle this input data
rate and 2) perform the event-filtering functions. We have
initial results for the first of these questions. Because of the
architectural similarity with DarkSide-50 and similar high
data-rate requirement, we have been able to utilize a system of
five nodes (of the same configuration described earlier) of the
IB-connected system for these tests.
The configuration of the event builders and data generators

is somewhat different than the DarkSide-50 configuration. Here
we use the IB network entirely for the event building and drive
it using our MPI-based components.
We simulate each of the five nodes being connected to the ex-

periment’s front-end hardware by having each node run a data-
generator process. Each data-generator process sends its data di-
rectly to a single fragment-receiver process on the same node.
Each node also runs an event-builder process. Each fragment
receiver sends fragments to all event builders. This means that
each node effectively sees one-fifth of the detector on readout
and also one-fifth of the full events for processing and analysis.
If the system scaled perfectly, we would expect a rate that is five
times that of one machine. Partly because of the many-to-one
function that being performed for event building, this is not pos-
sible. With this 5 5 configuration, and without tuning the MPI
implementation, we measured an average aggregate throughput
of 3.6 GB/s (or approximately 730 MB/s per node).
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This early result is encouraging. If additional scale-up tests
indicate that similar rates can be maintained, it shows that it
is feasible to construct a 30 GB/s data processing system at a
reasonable cost.
In order to measure the degree to which artdaq allows ex-

periments to have useful access to the computational power of
the multiple cores available on modern platforms, we performed
tests using the computing nodes purchased for the DarkSide-50
DAQ. These consisted of four Intel-based machines, each with
2 Intel Xeon E5-2620 chips (12 total cores per node), and
six AMD-based machines, each with 4 AMD6212 chips (32
total cores per node), all connected on a QDR InfiniBand net-
work. We configured the system according to the design of the
DarkSide-50 DAQ, using the four Intel-based nodes to send
data (running fragment-receiver processes) and used the AMD
nodes to run the event-builder processes. We varied both the
number of nodes used for event building, and the number of
event-builder processes run on each node, and measured the
aggregate throughput of the system in each configuration. Our
measurements are shown in Fig. 3. The plateau bandwidth is 3.8
GB/s; this is reached using four nodes for event building, or with
just three nodes if four or five event-builder processes are run
per node. Using additional event-builder processes is not seen
to slow the data handling. Thus, artdaq allows experiments to
take advantage of the additional cores on event-building nodes
either through process-level parallelism (which does not require
experiments to implement algorithms in a thread-safe manner),
or thread-level parallelism, for those experiments who have the
resources and expertise to attend to thread safety in the imple-
mentation of their algorithms.

V. SUMMARY

The initial prototype event builders written using the proto-
type artdaq have been able to achieve adequate (in the case of
DarkSide-50, much more than adequate) data throughput in a
very short time, with limited development resources and with
very modest demands placed upon the experiments’ developer
resources, using a modest amount of COTS computing hard-
ware.
Using tools commonly used in the HPC community, but not

typically used in DAQ systems (e.g., MPI, OpenMP, and In-
finiBand networking), we have demonstrated the feasibility of
building fully configurable, distributed, multiprocess programs,
without having to write any low-level code, and requiring a very
limited amount of experiment-specific code.
We have demonstrated portability between offline and online

software for testing and ease of debugging and have established
an environment in which we can carry on with our research
and development tasks. We have already generated some enthu-
siasm in those in our local community who have been surprised

Fig. 3. Aggregate bandwidth of the prototype DarkSide-50 DAQ system, for
varying numbers of event-building nodes and number of event-builder processes
per node.

by the speed of development and the resulting performance of
the system.
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